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1. Introduction

Proof of colour confinement is one of the most important, long-running problems in quan-

tum field theory today. Thanks to the efforts of many authors, such as [1 – 6], we may now

be close to solving this puzzle. A particularly promising mechanism is the dual Meissner

effect, in which a condensate of chromomagnetic monopoles excludes the chromoelectric

field analogously to the Cooper pairs in a superconductor excluding the magnetic field.

This proposal, dating back to the middle 1970s [7 – 11], requires QCD to have a magnetic

monopole condensate. One obvious difficulty was ensuring that the magnetic condensate

was due to monopoles, but the most discouraging was the result of Nielsen and Olesen [12]

in two-colour QCD that a magnetic condensate renders the zero-point gluon fluctuations

unstable. Although this instability was disputed [13 – 16], its existence remained conven-

tional wisdom until relatively recently. Cho et. al., using subtle causality considerations,

have argued that Nielsen and Olesen’s analysis was too näive and found instead that the

imaginary part of the effective action was zero for magnetic backgrounds but non-zero

for electric backgrounds [6]. Together with the current author, they have supported their

result with independent calculations [17, 18], and recently extended it to three or more

colours [19]. A different approach, taken by Kondo [20] in two-colour QCD, demonstrates

the generation of an effective gluon mass large enough to remove the tachyon mode. We

shall see that this argument has parallels with that of Flory [16] and Kay et.al. [21].
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I shall repeat Kondo’s approach in three- and four-colour QCD. Section 2 presents the

Cho-Faddeev-Niemi (CFN) decomposition for general SU(N) gauge groups. Section 3 de-

termines the magnetic and monopole condensates, drawing heavily on the maximal abelian

gauge analysis of Flyvbjerg [22]. This is followed by a discussion of the monopole generat-

ing subgroups U(1)N−1 and U(N − 1) and the different roles they play confining gluons or

quarks in section 4. I study the gluon’s effective mass matrix and determine the effective

mass (squared) in terms of the magnitude of the monopole field in section 5. The apparent

instability is briefly discussed in section 6. I establish inequalities between the magnetic

and monopole condensates in section 7. Section 8 adapts this approach to four-colour

QCD.

2. Specifying abelian directions

The CFN decomposition was first presented by Cho [11], and later by Faddeev and

Niemi [23], as a gauge-invariant means of specifying the Abelian dynamics of two-colour

QCD. These authors [24, 25] also applied it to three-colour QCD. In this section we adapt

it to general SU(N), although we are not the first to do so [26, 27], and establish our

notation.

The Lie group SU(N) for N -colour QCD has N2 − 1 generators λ(j), of which N − 1

are Abelian generators Λ(i). For simplicity, we specify the gauge transformed Abelian

directions with n̂i = U †Λ(i)U . Fluctuations in the n̂i directions are described by c
(i)
µ . The

gauge field of the covariant derivative which leaves the n̂i invariant is given by

gVµ × n̂i = −∂µn̂i . (2.1)

In general this is

Vµ = c(i)
µ n̂i + Bµ, Bµ = g−1∂µn̂i × n̂i, (2.2)

where summation is implied over i.

We define the covariant derivative

D̂µ = ∂µ + gVµ × . (2.3)

The monopole field strength

~Hµν = ∂µBν − ∂νBµ + gBµ × Bν , (2.4)

has only n̂i components, i.e.

H(i)
µν n̂i = ~Hµν , (2.5)

where H
(i)
µν has the eigenvalue H(i). Since we are only concerned with magnetic back-

grounds, H(i) is considered the magnitude of a background magnetic field H(i).

Xµ is defined to be the dynamical degrees of freedom (DOF) perpendicular to n̂i, so

if Aµ is the gluon field then

Aµ = Vµ + Xµ = c(i)
µ n̂i + Bµ + Xµ, (2.6)
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where

Xµ ⊥ n̂i, Xµ = g−1n̂i × Dµn̂i, Dµ = ∂µ + gAµ × . (2.7)

Substituting the CFN decomposition into the QCD field strength tensor gives

~F 2 = (∂µc(i)
ν − ∂νc(i)

µ )2 + (∂µBν − ∂νBµ + gBµ × Bν)2

+2(∂µc(i)
ν − ∂νc(i)

µ )n̂i · (∂µBν − ∂νBµ + gBµ × Bν) + (D̂µXν − D̂νXµ)2

+2g((∂µc(i)
ν − ∂νc(i)

µ )n̂i + ∂µBν − ∂νBµ + gBµ × Bν) · (Xµ × Xν)

+g2(Xµ × Xν)2 + 2g(D̂µXν − D̂νXµ) · (Xµ × Xν). (2.8)

This expression holds for all N -colour QCD except N = 2 where the last term is absent.

A näive substitution of the CFN decomposition appears to leave the gluon field with

additional DOF, and this has been a source of considerable confusion and controversy.

Detailed analyses can be found in [28 – 30] demonstrating that the n̂i are not fundamental,

but a compound of dynamic fields. Hence n̂i,Bµ are dynamic but do not constitute extra

DOFs.

However the CFN decomposition does introduce additional gauge DOFs, which a

proper application must fix. [6, 28] discussed the problem effectively in terms of the passive

and active gauge symmetries, but I shall follow the notation of [29]. Their analysis was

restricted to two-colour QCD, but its application to N -colours is so straightforward as to

be little more than repetition. It is sufficient for our purposes to say that the CFN decom-

position of QCD can be properly quantised in a consistent manner that leaves it equivalent

to conventional QCD.

3. The SU(3) CFN QCD vacuum

To discuss the vacuum state we employ the formalism of Lie algebra roots to the isovectors

Bµ,Xµ, reducing them to

Bµ = B(1,0)
µ + B

( 1

2
,
√

3

2
)

µ + B
( 1

2
,−

√

3

2
)

µ = B(1,0)
µ + B

(− 1

2
,−

√

3

2
)

µ + B
(− 1

2
,
√

3

2
)

µ ,

Xµ = X(1,0)
µ + X

( 1

2
,
√

3

2
)

µ + X
( 1

2
,−

√

3

2
)

µ = X(1,0)
µ + X

(− 1

2
,−

√

3

2
)

µ + X
(− 1

2
,
√

3

2
)

µ .

(3.1)

B
(α)
µ is defined so that

gB(α)
µ × B(α)

ν = − ~H(α)
µν , (3.2)

while X
(α)
µ is the component of Xµ which feels the monopole field strength tensor ~H

(α)
µν ,

where
~H(α)

µν = αjH
(j)
µν . (3.3)

We also define the background magnetic field

H(α) = αjH
(j), (3.4)
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whose magnitude H(α) is ~H
(α)
µν ’s non-zero eigenvalue. It follows that

H(1,0) = H(1), H( 1

2
,±

√

3

2
)2 =

1

4
H(1)2 +

3

4
H(2)2 ±

√
3

2
H(1) · H(2). (3.5)

This result is formally the same as Flyvberg’s [22], with the subtle difference that our

H(α) refers to the the field strength generated by the Cho connection while Flyvberg’s

is simply the field strength along the Abelian directions in the maximal Abelian gauge.

Nonetheless, it is clear that we can repeat the renormalization analysis and get the same

formal result. This gives the corresponding results for the lowest energy state,

H(1) = H(2), H(1) ⊥ H(2), (3.6)

as found independently for the CFN formalism using a different approach by Cho, Kim

and Pak [19].

4. U(1)N−1 monopoles vs U(N − 1) monopoles

Since the ultimate motivation of this work is confinement, it is appropriate to discuss an

important issue first brought to light by Kondo and Taira [31, 32] in their construction of a

non-Abelian version of Stokes’ theorem. They found that the monopole contribution to the

Wilson loop depends on which representation of the gauge group the colour charge belongs

to. In the SU(3) gauge group for example, discussion of the fundamental representation

concerns only the monopoles corresponding to the reduction from SU(3) down to U(2)

symmetry [31], specified by the homotopy group

π2[SU(3)/U(2)] = π1[U(2)] = π1[SU(2) ⊗ U2(1)] = π1[U2(1)] = Z2, (4.1)

(Subscripts i in this section denote the relevant Abelian generator Λ(i).) while for colour

charges in the adjoint representation we need to consider the corresponding U(1) ⊗ U(1)

fundamental group

π2[SU(3)/(U1(1) ⊗ U2(1))] = π1[U1(1) ⊗ U2(1)] = Z1 ⊕ Z2. (4.2)

The Abelian generator Λ(1) of the subgroup U(2) is contained in the simply connected

subgroup SU(2), leaving only the fundamental group generated by Λ(2). Hence the

monopole charges corresponding to the U(2) subgroup are a subset of those corresponding

to U1(1)⊗U2(1). Specifically, it is the subset for which the charge corresponding to U1(1)

is zero.

To construct the monopole field due to the U(2) subgroup, observe that since the U(2)

monopole field is purely Λ(2)-like it will be the covariant connection of the unit vector n̂2.

It is easy to show that

Lµ = g−1 4

3
∂µn̂2 × n̂2, (4.3)

has the required property

gLµ × n̂2 = −∂µn̂2. (4.4)
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Of course, the U1(1) ⊗ U2(1) monopole field Bµ also has this property, so

g(Bµ − Lµ) × n̂2 = 0. (4.5)

Since

gB(1,0)
µ × n̂2 = 0, (4.6)

it follows that

Lµ = B
( 1

2
,
√

3

2
)

µ + B
( 1

2
,−

√

3

2
)

µ = B
(− 1

2
,−

√

3

2
)

µ + B
(− 1

2
,
√

3

2
)

µ . (4.7)

For general SU(N), the Wilson loop for gluons, which belong to the adjoint represen-

tation, depends on the full set of monopoles corresponding to the homotopy group

π2[SU(N)/(U1(1)
N−1)] = π1[U1(1)

N−1] = Z1 ⊕ Z2 ⊕ . . . ⊕ ZN−1. (4.8)

This is in contrast to that of quarks in the fundamental representation, which receives

monopole contributions only from those corresponding to

π2[SU(N)/U(N − 1)] = π1[U(N − 1)] = π1[UN−1(1)] = ZN−1. (4.9)

The covariant connection of the unit vector n̂N−1 has the general form

Lµ = g−1K(N)∂µn̂N−1 × n̂N−1. (4.10)

It is now trivial to generalise the SU(3) statement

(Bµ − Lµ) × n̂N−1 = 0. (4.11)

This section demonstrates that a whole new analysis is unnecessary if quark, rather

than gluon confinement is of interest. Of course, stability of the ground-state fluctuations

of the quark field was never an issue. In the expected absence of internal anisotropy, all

other results concerning condensates of Bµ should also hold for Lµ.

5. Mass of off-diagonal SU(3) gluons

Following Kondo [20], we observe at the classical level that the monopole condensate gives

the off-diagonal gluons an effective mass via

1

2
(D̂µXν − D̂νXµ)2

IBP−→ (XµD̂ν) · (D̂µXν) − (XµD̂ν) · (D̂νXµ). (5.1)

The latter term gives

g2BD
ρ XE

µ BB
ρ XC

µ fABCfADE, (5.2)

which provides the effective gluon mass matrix

M2
EC = g2BD

ρ BB
ρ fABCfADE. (5.3)
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Since the effective mass term arises from the quartic gluon terms, this is consistent with

calculations by Flory [16] and Kay et.al. [21] showing that the instability is removed when

the quartic terms relevant to the unstable modes are included. Dudal and coworkers are

following an entirely different approach [33, 34] in which the gluon mass comes from a

ghost-gluon condensate with dimensions of mass squared.

So far this section has followed the corresponding section 2.2 in [20]. Because the

algebra of SU(2) is simpler than that of SU(3), the author was able to simply diagonalize

the mass matrix and obtain the mass squared eigenvalues B ·B (multiplicity two) and zero.

The zero eigenvalue corresponds to the Abelian direction.

Diagonalizing (5.3) however, is too difficult even for mathematica but there is another

way. The sum of the mass eigenvalues is the trace of the mass matrix, 3g2B · B. Since

there are two Abelian directions from which the valence gluon is excluded by definition

(see (2.7)), it follows that zero is an eigenvalue of multiplicity two and the average effective

mass squared is

M2
X =

3

8 − 2
g2B ·B =

1

2
g2B ·B. (5.4)

Since all physical masses are equal by the isotropy of the condensate and the gauge invari-

ance of the mass term (5.2), (5.4) is the effective mass of all valence gluons. A conventional

diagonalization of M2
EC in this treatment would, of course have been preferable, but this

approach does give the same result as diagonalization in SU(2) QCD.

6. Is the monopole condensate stable in SU(3) QCD?

It has been shown [22, 35] that

‖H(α)‖ 6= 0, (6.1)

but a calculation of the X(α) ground-state energy using zeta-function renormalization,

as first demonstrated in two-colour QCD [12] by Nielsen and Olesen, has an imaginary

contribution [36] from
√

k2 − g‖H(α)‖. (6.2)

However there is still hope, because we saw in section 5 that the gluons gain an effective

mass, changing this to
√

k2 + M2
X − g‖H(α)‖. (6.3)

It now remains to demonstate that the spin contribution is smaller in magnitude than the

effective gluon mass squared.

7. Monopole vs the magnetic condensate

Since 〈‖H(α)‖〉 does not vary with α, proving sufficient M2
X to prevent tachyons for X

(1,0)
µ

is sufficient to prove it for Xµ. Noting

(B(α)
µ × B(α)

ν )2 = (B(α)
µ ·B(α)

µ )2 − (B(α)
µ · B(α)

ν )2. (7.1)
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gives

‖gH(1,0)‖ = g2‖n̂1 ·B(1,0)
µ × B(1,0)

ν + n̂1 · B
( 1

2
,
√

3

2
)

µ ×B
( 1

2
,
√

3

2
)

ν + n̂1 ·B
( 1

2
,−

√

3

2
)

µ × B
( 1

2
,−

√

3

2
)

ν ‖

≤ 2g2

3
B ·B, (7.2)

which is not strong enough. We remedy this by showing that

√
2‖B(α)

µ × B(α)
ν ‖ ≤ B(α)

µ ·B(α)
µ . (7.3)

Begin by constructing a convenient coordinate system. Let {n̄j}N2−1
j=1 be unit vectors

spanning SU(N) . n̄i · n̄j × n̄k is gauge invariant under

δn̄i = n̄i × α,

so

n̄i · n̄j × n̄k ≡ f̄ijk = fijk. (7.4)

We can construct a convenient coordinate system by starting with

{n̄j} = {êj}, (7.5)

and gauge transforming {n̄j} so that

n̄3, n̄8 = n̂1, n̂2, (7.6)

respectively. It follows that

f̄ijk = fijk. (7.7)

Restricting the analysis to SU(3), B
±(1,0)
µ , X

±(1,0)
µ lie in the {n̄1, n̄2} plane, B

±( 1

2
,
√

3

2
)

µ ,

X
±( 1

2
,
√

3

2
)

µ lie in the {n̄4, n̄5} plane, and B
±( 1

2
,−

√

3

2
)

µ ,X
±( 1

2
,−

√

3

2
)

µ lie in the {n̄6, n̄7} plane.

The following is based on a method developed by Kondo [37] for two-colour QCD.

Define

T ab = n̄a · ∂n̂1 n̄b · ∂n̂1 , (7.8)

where a, b are restricted to 1, 2. T ab is a two by two matrix, having two real eigenvalues,

λ1 and λ2 say. We find the inequality

1

2

(

2
∑

a=1

λa

)2

= λ2
1 + λ2

2 −
1

2
(λ1 − λ2)

2 ≤
2

∑

a=1

λ2
a → 1

2
(Tr T )2 ≤ (Tr T 2). (7.9)

Proof of (7.3) for H
(1,0)
µν is straightforward. Take

[∂µn̂1]
a = n̄a n̄a · ∂µn̂1 (no summation), (7.10)

where a is restricted to 1, 2. We get

g2 ~H(1,0)
µν · ~H(1,0)

µν = g4(B(1,0)
µ × B(1,0)

ν )2 = f̄3ab[∂µn̂1]
a[∂νn̂1]

bf̄3cd[∂µn̂1]
c[∂νn̂1]

d

= (Tr T )2 − (Tr T 2). (7.11)
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Substituting in (7.9) we find

~H(1,0)
µν · ~H(1,0)

µν ≤ 1

2
g2(B(1,0)

µ · B(1,0)
µ )2, (7.12)

which leads to equation (7.3). The construction for ~H±( 1

2
,
√

3

2
) is only slightly more compli-

cated. Redefine

T (a−3)(b−3) = n̄a · ∂n̂2 n̄b · ∂n̂2 , (7.13)

where a, b are restricted to 4, 5. Now take

[∂µn̂2]
a = n̄a n̄a · ∂µn̂2, (7.14)

where a is still restricted to 4, 5. Recalling the discussion of equation (4.3) and repeating

the above argument leads to

g2 ~H
±

(

1

2
,
√

3

2

)

µν · ~H
±

(

1

2
,
√

3

2

)

µν = g4

(

B
±

(

1

2
,
√

3

2

)

µ ×B
±

(

1

2
,
√

3

2

)

ν

)2

=
16

9

(

1

4
f̄3abf̄3cd +

3

4
f̄8abf̄8cd

)

[∂µn̂2]
a[∂ν n̂2]

b[∂µn̂2]
c[∂νn̂2]

d

=
16

9
((Tr T )2 − (Tr T 2)), (7.15)

which again yields equation (7.3). The argument for ~H
±

(

1

2
,
√

3

2

)

is identical. The adaptation

of this technique to higher N is straightforward.

The above introduces a factor of
√

2 to the inequality (7.2), which becomes

‖gH(1,0)‖ = g2
∥

∥

∥
n̂1 ·B(1,0)

µ × B(1,0)
ν + n̂1 · B

( 1

2
,
√

3

2
)

µ ×B
( 1

2
,
√

3

2
)

ν + n̂1 ·B
( 1

2
,−

√

3

2
)

µ × B
( 1

2
,−

√

3

2
)

ν

∥

∥

∥

≤ 2g2

3
√

2
B ·B <

1

2
g2B ·B, (7.16)

demonstrating that the effective mass is sufficient to stabilize the tachyonic gluon mode.

While unnecessary for SU(3), it is possible to use 〈‖H(1)‖〉 = 〈‖H(2)‖〉 to find an even

stronger upper bound on 〈‖ ~H(α)‖〉.

‖gH(2)‖ ≤ g2

√
3

2

(∥

∥

∥
B

(

1

2
,
√

3

2

)

µ × B

(

1

2
,
√

3

2

)

ν + B

(

1

2
,−

√

3

2

)

µ ×B

(

1

2
,−

√

3

2

)

ν

∥

∥

∥

)

, (7.17)

yielding

‖gH(2)‖ ≤ g2

√
3

3
√

2
B ·B =

g2

√
6
B ·B <

g2
√

2

3
B · B. (7.18)

This style of argument will prove necessary in the treatment of SU(4).
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8. Stability of SU(4) QCD

Repeating the analysis of section 5 finds an effective gluon mass squared in SU(4) QCD of

M2
SU(4) =

4g2B ·B
12

=
g2

3
B · B. (8.1)

Following the last section, we again need only one 〈‖gH(i)‖〉 < M2
SU(4). For H(1) we get

‖gH(1)‖ ≤ g2

2
√

2
B · B > M2

SU(4) , (8.2)

but studying H(3) yields

‖gH(3)‖ ≤
√

2

3

∥

∥

∥
g2B

(

1

2
,
q

1

12
,
q

2

3

)

µ × B

(

1

2
,
q

1

12
,
q

2

3

)

ν

∥

∥

∥

+

√

2

3

∥

∥

∥
g2B

(

1

2
,−

q

1

12
,−

q

2

3

)

µ × B

(

1

2
,−

q

1

12
,−

q

2

3

)

ν

∥

∥

∥

+

√

2

3

∥

∥

∥
g2B

(

0,
q

1

3
,−

q

2

3

)

µ × B

(

0,
q

1

3
,−

q

2

3

)

ν

∥

∥

∥

≤ g2

2
√

3
B ·B < M2

SU(4), (8.3)

protecting the monopole condensate in SU(4) QCD. It is pointless to try and general-

ize this result to arbitrary SU(N > 4) in three dimensional space because satisfying the

equations (3.6) requires N − 1 mutually orthogonal vector fields [22].

9. Discussion

A case for a stable monopole condensate in the QCD vacuum has been presented. By

adapting the CFN decomposition to the higher gauge group we have ensured that our

analysis describes the monopoles in a consistent, gauge invariant manner. Applying the

CFN decomposition to SU(N > 2) is straightforward and reasonably intuitive. This was

also the experience of Cho, Kim and Pak [19] who have demonstrated condensate stability

in SU(3) QCD by calculating the imaginary part of the effective action as discussed earlier.

The CFN formalism, while different from and superior to t’Hooft’s Abelian gauge, has

sufficient formal similarity for Flyvbjerg’s analysis [22] to carry over to it, so we inherit the

corresponding results concerning the QCD ground state in section 3.

When discussing whether the effective gluon mass is sufficient to stabilize the ground

state, it is important to remember that the relevant magnetic field strength magnitudes

are found in the gluon spin interaction ‖H(α)‖. Diagonalizing the mass matrix directly

seems impossible, but the invariance of the mass-generating term under global active gauge

transformations ensures that the mass eigenvalues are equal, allowing their deduction from

the trace of the mass matrix. It must be remembered that the construction of the gluon

mass squared matrix was a classical one, even though a one-loop calculation is providing

– 9 –
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the non-zero condensate. Complete proof requires the mass matrix calculation to be a

quantum one. The approach of Dudal and coworkers [33, 34] is interesting in this regard.

It has been shown explicitly for three-colour QCD that the CFN decomposition corre-

sponding to the maximal Abelian subgroup contains the monopoles corresponding to the

U(2) subgroup automatically. It is not hard to derive the corresponding result for the CFN

decomposition in four-colour QCD from the non-trivial homotopy groups for SU(4) [38].

Our main result is that applying Kondo’s argument [20] to SU(3) or SU(4) QCD finds

an effective gluon mass sufficient to stabilize the monopole condensate. SU(N > 4) QCD

requires a new analysis for reasons given at the end of section 8.
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